

[L1][CO1]

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Soil Mechanics (20CE0161)

Course & Branch: B.Tech (AGE)

Year & Sem: III / I Regulation: R20

Define the terms void ratio, specific gravity of particles, degree of saturation

UNIT –I Part A: Introduction of Soil Mechanics Part B: Properties of Soils

		and dry densi	ity.			1 11 1	
	b.	Develop a re	lationship betwee	n the void ratio, water content,	specific gravity	[L2][CO1]	[6M]
		of particles a	nd degree of satu	ration.			
2	a.	Explain in de	tail how soils are	formed.		[L1][CO1]	[6M]
	b.	Briefly expla	in different types	of soil structures which can oc	cur in nature.	[L1][CO1]	[6M]
3	A s	soil sample h	as a porosity of	40%. The specific gravity of	of solids is 2.70.	[L3][CO1]	[12M]
				nsity, (c) unit weight if the soil	l is 50% saturated		
				npletely saturated.			
4			<u> </u>	N. After drying in an oven, its	_	[L3][CO1]	[12M]
				of solids and the mass spec			
	_	•		mine the water content, void r			
				nit weight of water is 10 kN/m ³		FF 215 CO 11	[10]
5				f 1 litre and a weight of 17.5		[L3][CO1]	[12M]
				he dry unit weight of the soloid ratio, (c) porosity, (d) satu			
		* *		legree of saturation.	rated unit weight,		
6				gravity of 2.67 was filled in a	1000 ml container	[L3][CO1]	[12M]
		-		e dry weight of the sample was			[1211]
			t was found to be				
			3. Determine the				
		sity index in th					
7	The	result of a sie	ve analysis of a s	oil are given below:		[L3][CO1]	[12M]
	Tota	al mass of sam	ple = 900 g.				
		г			7		
			Is Sieve	Mass of soil retained (g)	_		
			20 mm	35	-		
			10 mm	40	-		
			4.75 mm	80	-		
		-	2.0 mm	150	 -		
		-	1.0 mm	150	- -		
			0.6 mm	140	_		
		-	425 μ	115	 -		
			212 μ	55	-		
			150 μ	35	-		
			75 μ	25			
			Pan	75			
1							
	_						
			e size distribution	on curve and hence determin	e the uniformity		

Course Code: 20CE0161

8	a.	Explain consistency limi					[L1][CO1]	[6M]
		between water content and	l volume o	of soil and sho	w different st	tates of soil.		
	b.	Determine the specific gra	vity of sol	ids from the	following obs	ervations:	[L3][CO1]	[6M]
		(i) Mass of dry sa	mple = 0.3	95 kg	<u> </u>			
		(ii) Mass of pycno	-	-	755 kg			
		(iii) Mass of pycno				er = 2.005 kg		
9	a.	A test for the determination					[L3][CO1]	[6M]
		using Casagrande's appar		_				
		Plot the flow curve and de		_				
		No. of Blows (N)	13					
		Water content (w) %	53.9					
	1.	` ′	00.7	IT 41[CO11	[CN/I]			
	b.	The sieve analysis of a soi		[L4][CO1]	[6M]			
		% passing 75 μ sieve = 8						
		% retained on 4.75 mm signal						
		Coefficient of curvature =						
		Uniformity coefficient = 7						
		The fine fraction gave the	following	results:				
		Plasticity index $= 3$						
		Liquid limit = 15						
		Classify the soil according						
10	A t	est for the relative density of	of soil in p	lace was perf	ormed by digg	ging a small hole	[L3][CO1]	[12M]
	in	the soil. The volume of	st weight of the					
		cavated soil was 9 N. After						
	Nv	was poured into a vessel in	a very loos	se state, and it	ts volume was	s found to be 270		
	ml.	. The same wight of soil v	vhen vibra	ated and tam	ped had a vo	lume of 200 ml.		
	Det	termine the relative density	•	•				

UNIT –II Part A: Permeability of Soils Part B: Effective Stress

1	a.	Estimate the flow quantity (in litres per second) through the soil in the pipe hown in Figure 2.1. The pressure heads at two locations are shown in the ame figure. The internal diameter of the pipe is 1 m and the coefficient of ermeability of soil is 1 x 10 ⁻⁵ m/s. Figure 2.1 The various factors affecting the permeability of soil. The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? In a falling head permeameter test on a silty clay sample, the following esults were obtained: The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils? The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the ifference in the pore size of the two soils?							
	b.	Estimate the flow quantity (in litres per second) through the soil in the pipe shown in Figure 2.1. The pressure heads at two locations are shown in the same figure. The internal diameter of the pipe is 1 m and the coefficient of permeability of soil is 1 x 10 ⁻⁵ m/s. Figure 2.1 rate various factors affecting the permeability of soil. The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the difference in the pore size of the two soils? In a falling head permeameter test on a silty clay sample, the following results were obtained: Sample length = 12 mm Sample diameter = 80 mm							
		Estimate the flow quantity (in litres per second) through the soil in the pipe shown in Figure 2.1. The pressure heads at two locations are shown in the same figure. The internal diameter of the pipe is 1 m and the coefficient of permeability of soil is 1 x 10 ⁻⁵ m/s. Figure 2.1 rate various factors affecting the permeability of soil. The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the difference in the pore size of the two soils?							
		permeability of soil is 1 x 10 ⁻⁵ m/s.							
		[-]							
		Figure 2.1							
2	Elabor	rate various factors affecting the permeability of soil.	[L1][CO2]	[12M]					
3	a.	The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the	[L3][CO2]	[6M]					
		difference in the pore size of the two soils?							
	b.								
		results were obtained:							
		1 2							
		1							
		Initial head = 1200 mm							
		Final head =400 mm							
			Time for fall in head = 6 minutes						
		Stand pipe diameter = 4 mm							
		Find the coefficient of permeability of the soil in mm/s.							
4	Figure	e 2.2 shows a cross-section through the strata underlying a site. Calculate the	[L3][CO2]	[12M]					

	COU	e: 20CE0101	1120	
	-	valent permeability of the layered system in the vertical and horizontal etion. Assume that each layer is isotropic.		
		3 m k = 0.2 cm/sec		
		1m k=3X10 cm/sec		
		8-5 m 1-5 m k = 0-06 cm/sec		
		3m k = 5 X 10 ⁷ cm/sec		
		Figure 2.2		
5	Drav	v the neat sketch of Variable Head Permeameter and derive the equation for	[L2][CO2]	[12M]
		mining coefficient of permeability.		
6	a.	Define total stress, neutral stress and effective stress. What is the importance	[L1][CO2]	[6M]
		of the effective stress?		
	b.	What is a quick sand? How would you calculate the hydraulic gradient required to create quick sand condition in a sample of sand?	[L2][CO2]	[6M]
7	A gr	anular soil deposit as shown in Figure 2.3 is 7 m deep over an impermeable	[L3][CO2]	[12M]
	layer	The ground water table is 4 m below the ground surface. The deposit has a		
	zone	of capillary rise of 1.2 m with a saturation of 50%. Plot the variation of total		
		s, pore water pressure and effective stress with the depth of deposit, $e = 0.6$ and		
	G =	2.65.		
		1 1 A		
		Dry soil 2.8 m		
		7 m Wet soil		
		<u> </u>		
		3 m Saturated soil		
		tulummunumm 0		
		Imp. layer		
Ω	Fa = 1	Figure 2.3	[T 2][CO2]	[10]
8		he subsoil conditions shown in Figure 2.4, draw the total, neutral and effective	[L3][CO2]	[12M]
	sures	s diagrams upto a depth of 9 m, neglecting capillary flow.		
		G.L. A		
		Void ratio e = 0.5 3 m S = 40%		
		5 m Sand W.T. G = 2.67		
		Janu B		
		- c		
		$V_n = 40\%$		
		4 m Glay G = 2.7		
		1		
		Figure 2.4		
9	Com	C	[[2][CO2]	[12]
9		pute the total, effective and pore pressure at a depth of 20 m below the bottom	[L3][CO2]	[12M]
		lake 6 m deep. The bottom of lake consists of soft clay with a thickness of		
		e than 20 m. The average water content of the clay is 35% and the specific		
	grav	ity of the soil may be assumed to be 2.65.		

Course Code: 20CE0161 **R20**

UNIT –III Part A: Stress Distribution of Soils Part B: Compaction

2	b. a. b.	due to a point load acting on it. Derive an expression for the vertical stress at a point due to a line load. Discuss the basis of the construction of Newmark's influence chart. How it is	[L2][CO3]	[6M]
2	a.	Discuss the basis of the construction of Newmark's influence chart. How it is		
			TT 11[C(C)2]	
<u> </u>	b.	10	[L1][CO3]	[6M]
	b.	used?		
		A monument weighing 15 MN is erected on the ground surface. Considering	[L3][CO3]	[6M]
		the load as a concentrated one, determine the vertical pressure directly under the monument at a depth of 8 m below the ground surface.		
3 8	a.	Explain Wastergaads's theory for the determination of the vertical stress at a	[L1][CO3]	[6M]
<u> </u>		point. How is it different from Boussinesq's solution?		
1	b.	A water tower has a circular foundation of 10 m diameter, If the total weight	[L3][CO3]	[6M]
		of the tower, including the foundation is 2 x 10 ⁴ kN, calculate the vertical		
		stress at a depth of 2.5 m below the foundation level.		
4	An e	xaction 3 m x 6 m for foundation is to be made to a depth of 2.5 m below	[L3][CO3]	[12M]
		nd level in a soil of bulk unit weight 20 kN/m ³ . What effect this exaction will		
		on the vertical pressure at a depth of 6 m measured from the ground surface		
		cally below the centre of foundation? I_N for $m = 0.43$ and $n = 0.86$ is 0.10.	FT 415 CO 41	[10] []
		we the equation for vertical stress under a strip load (a) at a point below the	[L2][CO3]	[12M]
		e of the strip (b) point not below the centre of the strip.	II 21[CO4]	[12]
		mple of soil was prepared by mixing a quantity of dry soil with 10% by mass ater. Find the mass of this wet mixture required to produce a cylindrical,	[L3][CO4]	[12M]
		pacted specimen of 15 cm diameter and 12.5 cm deep and having 6% air		
	-	ent. Find also the void ratio and the dry density of the specimen if $G = 2.68$.		
		following are the results of a standard compaction test performed on a sample	[L3][CO4]	[12M]
	of so			[1211]
		ter Content (%) 7.7 11.5 14.6 17.5 19.7 21.2		
-		ss of wet soil (kg) 1.7 1.89 2.03 1.99 1.96 1.2		
		e volume of the mould used was 950 c.c. and the specific gravity of soil grains		
		2.65,make necessary calculations and plot the water content – dry density		
		e and obtain the optimum water content and maximum dry density.		
		a detailed account on effect of compaction on engineering properties of soils.	[L1][CO4]	[12M]
_	a.	Elaborate on factors affecting compaction.	[L1][CO4]	[6M]
	b.	Describe the methods used in field for compaction.	[L1][CO4]	[6M]
10	An e	arthen embankment of 10 ⁶ m ³ volume is to be constructed with a soil having a	[L5][CO4]	[12M]
		ratio of 0.80 after compaction. There are three borrow pits marked A, B, and		
		aving soils with void ratios 0.90, 1.50 and 1.80, respectively. The cost of		

Course Code: 20CE0161

R20

exaction and transporting the soil is Rs.0.25, Rs.0.23 and Rs.0.18 per m³, respectively. Calculate the volume of soil to be excavated from each pit. Which borrow bit is the most economical? Consider specific gravity of soil solids as 2.65.

UNIT –IV Consolidation

1		Differentiate h	etween 'Compaction'	and 'Consolidation'		[I 2][CO5]	[6M]
1	a. b.		-	aghi for theory of one-	dimancional	[L2][CO5] [L1][CO5]	[6M] [6M]
	υ.	consolidation.	iipuons made by Terza	agiii ioi tileory or olie-c	annensionai		[UNI]
2	Def	ine the following	r items:			[L1][CO5]	[12M]
			of compressibility			[L1][CO3]	[1211]
			of volume change				
		(iii)Compression	•				
		(iv)Expansion in					
		(v) Recompression					
3	a.		us stages of consolidat	ion of soils.		[L1][CO5]	[6M]
	b.			olidated and the overco	nsolidated soils.	[L2][CO5]	[6M]
4	The	How would you determine the preconsolidation pressure? The following results were obtained from a consolidation test: initial height of sample, $H_i = 2.5 \text{ cm}$ [leight of solid particles, $H_s = 1.25 \text{ cm}$ [leight of				[L3][CO5]	[12M]
	Hei	ght of solid parti	cles, $H_s = 1.25$ cm		_		
			Pressure in kg/cm ²	Dial reading in cm			
	0.00 0.000						
			0.13				
	0.27 0.004						
			9.60	0.340			
	DI	•	15.00	0.420			
		_		ermine (a) the compress	sion index and (b)		
5		preconsolidation	1	volved in determination	of anofficient of	[T 1][CO5]	[6M]
3	a.		sing Square-root of tin		i of coefficient of	[L1][CO5]	[OIVI]
	b.			esults have been obtain	ed When the load	[L3][CO5]	[6M]
	Ю.	was changed from	om 50 kN/m^2 to 100 kJ	N/m^2 , the void ratio cha	anged from 0.70 to		[01/1]
		_		ume decrease, m_v and	_		
		index, C _c .		, v	r		
6	A c		er is expected to have	e total settlement of 1	5 cm under a given	[L3][CO5]	[12M]
			_	two months after the	_		
	incr	ement? How m	any months will be r	equired to reach a set	tlement of 7.5 cm?		
	Wh	at is the settleme	ent in 18 months? The	layer has double draina	age.		
7				es above an impervious		[L3][CO5]	[12M]
				ion index of 0.28 ar			
			x 10 ⁻⁴ cm/sec. Its voi	id ration at a stress of	150 kN/m ² is 1.95.		
		ermine:			, 2		
				ase in stress to 210 kN			
	` ′			e above increase in stre	ess and		
	, ,		or 50% consolidation.	rion as 0.20			
Q			T_v for 50% consolidat		timata sattlament of		[12N/I]
8		•	• •	expected to have an ul ne average settlement		[L4][CO5]	[12M]
	332	min. Anter a th	ne span or 5 years, tr	ie average settlement	was incasured to be		

	152 mm. How much longer will it take for the average settlement to attain 237 mm?		
9	Undrained soil sample 30 m thick got 50% consolidation in 20 minutes with	[L4][CO5]	[12M]
	drainage allowed at top and bottom in the laboratory. If the clay layer from which		
	the sample was obtained is 3 m thick in field condition, estimate the time it will take		
	to consolidate 50% with (i) double surface drainage (ii) single surface drainage, if in		
	both cases, consolidation pressure is uniform.		
10	A footing has a size of 3.0 m by 1.50 m and it causes a pressure increment of 200	[L4][CO5]	[12M]
	kN/m ² at its base as shown in Figure 4.1. Determine the consolidation settlement at		
	the middle of the clay layer. Assume 2:1 pressure distribution and consider the		
	variation of pressure across the depth of the clay layer. $\gamma_w = 10 \text{ kN/m}^3$.		
	\sim 1		
	<u>1m</u>		
	V=16.0 kN/m ³ → 1.5 m		
	sat = 18 · 0 kN/m3 0-5 m		
	CLAY		
	3 m		
	¥=15 kN/m3 %= 0.80		
	C _c = 0.30		
	Figure 4.1		

UNIT –V Shear Strength

1	a.	Explain Mohr-Coulomb theory and draw the failure envelope.	[L1][CO6]	[6M]					
	b.	Sketch the stress-strain relationship for dense and loose sand. Explain Coulomb's law for shearing strength of soils and its modification by Terzaghi. A shear vane of 7.5 cm diameter and 11.0 cm length was used to measure the shear strength of a soft clay. If a torque of 600 N-m was required to shear the soil, calculate the shear strength. The vane was then rotated rapidly to cause remoulding of the soil. The torque required in the remoulded state was 200 N-m. Determine the sensitivity of the soil.							
2	a.	Explain Coulomb's law for shearing strength of soils and its modification by	[L1][CO6]	[6M]					
		Terzaghi.							
	b.	A shear vane of 7.5 cm diameter and 11.0 cm length was used to measure the	[L3][CO6]	[6M]					
		shear strength of a soft clay. If a torque of 600 N-m was required to shear the							
		soil, calculate the shear strength. The vane was then rotated rapidly to cause							
		remoulding of the soil. The torque required in the remoulded state was 200							
		N-m. Determine the sensitivity of the soil.							
3	a.	What is liquefaction of sands? How can it be prevented?	[L1][CO6]	[6M]					
	b.	Explain the effect of initial density on changes in void ratio with the help of	[L1][CO6]	[6M]					
		Shearing strain Vs Void ratio graph. Define Critical Void Ratio locate it on							
		the Shearing strain Vs Void ration graph.							
4	Wi	th the help of sketch explain how <i>Direct Shear Test</i> is conducted? What are its	[L1][CO6]	[12M]					
	me	rits and demerits?							
5	a.	Draw typical Mohr Circle for <i>Unconfined Compressive Test</i> . What are the	[L1][CO6]	[6M]					
		merits and demerits of this test.							
	b.	Explain the underlying principle of <i>Triaxial Compression Test</i> .	[L1][CO6]	[6M]					
6	Cal	culate the potential shear strength on horizontal plane at a depth of 3 m below	[L3][CO6]	[12M]					
	the	surface in a formation of cohesionless soil when the water table is at a depth of							
		m. The degree of saturation may be taken as 0.5 on the average. Void ratio =							
		grain specific gravity = 2.7 ; angel of internal friction = 30° . What will be the							
	mo	dified value of shear strength if the water table reaches the ground surface?							
7	a.	Discuss the shear strength characteristics of cohesionless soils and cohesive	[L1][CO6]	[6M]					
		soils.							

R20

	b.					,	test was carried	[L3][CO6]	[6M]
			sample failed.	The follow	ving results	s were obtain			
		Sample N		1		2	3		
			tress (kN/m ²)	1.		30	45		
			ess (kN/m ²)	1		25	32		
			the cohesion in						
8							ated undrained tests	[L3][CO6]	[12M]
			-	-			I. Determine the		
	cohesion intercept and the angle			le of shea	ring resista				
	Sample No. Con			fining pre		Deviato	r stress at failure		
				$((kN/m^2)$			(kN/m^2)		
	1			100			600		
	2			200			750		
	3			300			870		
9	The following results were obtained from a consolidated-undrained (CU) test on a							[L3][CO6]	[12M]
	normally consolidated clay. Plot the strength envelope in terms of total stresses								
	and effective stresses and determine the strength parameters.								
	S	Sample No. Confining pr					Pore water		
			((kN/n	<u>1²)</u>	1	(kN/m ²) pressure (
		1	250		152		120		
		2	500			00	250		
		3	750		455		350		
10	Cle	an and dry s	and samples w	ere tested	in a large	shear box. 2	25 cm x 25 cm and	[L3][CO6]	[12M]
			sults were obta		8	, -		[20][000]	[
		ormal load (5		10	15		
		eak shear loa	` /	5		10	15		
		timate shea	` /	2.9		5.8	8.7		
1	Dat	amaina tha a	(kN) Determine the angle of shearing resistance of the sand in the dense and loose						
	Det	erinine me a	ingle of shearif	ig resistan	ce of the s	and in the d	ense and loose		

PREPARED BY

C. Siva Kumar Prasad,
Associate Professor & Head,
Department of Civil Engineering,
Siddharth Institute of Engineering & Technology, Puttur.